Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 216: 112226, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33848739

RESUMEN

Freshwater organisms are often sensitive to pesticides, but their sensitivity varies across different taxa and with pesticide type and action mode, as shown by multiple acute toxicity tests. Such variability hampers predictions about how freshwater ecosystems may be altered by pesticide toxicity, which is especially critical for understudied areas of the world such as the tropics. Furthermore, there is little information about the sensitivity of some organisms that are key components of stream food webs; this is the case of litter-feeding detritivorous invertebrates, which contribute to the fundamental process of litter decomposition. Here, we examined the sensitivity of three common detritivores [Anchytarsus sp. (Coleoptera: Ptilodactylidae), Hyalella sp. (Amphipoda: Hyalellidae) and Lepidostoma sp. (Trichoptera: Lepidostomatidae)] to three pesticides commonly used (the insecticides bifenthrin and chlorpyrifos and the fungicide chlorothalonil) using acute (48 or 96 h) toxicity tests. Our study demonstrates that common-use pesticides provoke the mortality of half their populations at concentrations of 0.04-2.7 µg L-1. We found that all species were sensitive to the three pesticides, with the highest sensitivity found for chlorpyrifos. Additionally, we used the approach of species sensitivity distributions (SSD) to compare our study species with Daphnia magna and other temperate and tropical invertebrates. We found that the study species were among the most sensitive species to chlorpyrifos and chlorothalonil. Our results suggest that tropical detritivores merit special attention in ecological risk assessment of pesticides and highlight the need for accurate ecotoxicological information from ecologically relevant species in the tropics.

2.
Sci Total Environ ; 745: 140950, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32731071

RESUMEN

The expansion of agriculture is particularly worrying in tropical regions of the world, where native forests are being replaced by crops at alarming rates, with severe consequences for biodiversity and ecosystems. However, there is little information about the potential effects of agriculture on the functioning of tropical streams, which is essential if we are to assess the condition and ecological integrity of these ecosystems. We conducted a litter decomposition experiment in streams within a tropical catchment, which were subjected to different degrees of agricultural influence: low (protected area, PA), medium (buffer area, BA) and high (agricultural area, AA). We quantified decomposition rates of litter enclosed within coarse-mesh and fine-mesh bags, which allowed the distinction of microbial and detritivore-mediated decomposition pathways. We used litter of three riparian species representing a gradient in litter quality (Alnus acuminata > Ficus insipida > Quercus bumelioides), and examined detritivore assemblages through the contents of litterbags and benthic samples. We found that the increasing agricultural influence promoted microbial decomposition, probably due to nutrient-mediated stimulation; and inhibited detritivore-mediated and total decomposition because of reduced detritivore numbers, most likely caused by pesticides and sedimentation. Effects were evident for Alnus and Ficus, but not for Quercus, which was barely decomposed across the gradient. Our study provides key evidence about the impact of agriculture on tropical stream ecosystem functioning, which is associated to changes in stream assemblages and may have far-reaching repercussions for global biochemical cycles.


Asunto(s)
Ecosistema , Ríos , Agricultura , Biodiversidad , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...